
1 © Driven 2 Design, LLC
 Secure Bootloader Plus & Flash File Guardian User’s Manual Rev 2, 2020.11.02
 www.drvn2dsn.com

Secure Bootloader Plus
And

FLASH File Guardian
ST Microelectronics STM32 Edition

V2.0.0
November 02, 2020

2 © Driven 2 Design, LLC
 Secure Bootloader Plus & Flash File Guardian User’s Manual Rev 2, 2020.11.02
 www.drvn2dsn.com

1.0 Overview
The Secure Bootloader exists as 2 separate pieces that work together providing security for your
intellectual property (IP) and your embedded system products. These 2 parts are the Secure
Bootloader Plus that is programmed into your product’s FLASH memory and FLASH File Guardian, a
Windows GUI that encrypts your application binary. The Secure Bootloader and FLASH File Guardian
work as a team protecting your company’s IP from theft and protecting your product from being
programed with unauthorized executable code. This 2 pronged approach provides a level of security
a step above other bootloader products.

The device application (your device application code) is built and output to a binary file. Then FLASH
File Guardian is used to encrypt the binary locking away its contents from outside tampering or
theft. This secured file (.ffg) is then safe to distribute via email, FTP or any other means you choose
to your customers and technical service providers for updating your product devices in the field.

MCU Flasher is used to perform the actual update. MCU Flasher will communicate with Secure
Bootloader pre-installed on your product’s board to erase any previous application code and to
then program your device with the new application (.ffg file). All decryption is performed inside the
MCU prior to being programmed into FLASH. MCU Flasher does not perform the decryption on the
PC. This ensues the security of your IP. Another added benefit of MCU Flasher is that upon
connection MCU Flasher will request and display data from the current application. These data
items include the board’s serial number, the date it was commissioned with its number, the current
firmware part number, the firmware version, the firmware version date and the date the device
was updated with that version. It will also set the device’s RTC if equipped to the date and time
retrieved from the PC’s OS saving the operator the time of entering date and time manually.

2.0 High level steps for building your application for use with Secure Bootloader plus
Specific instructions for these steps are found later in this manual

1. Build the Secure Bootloader Plus project and program your board with it
2. Prepare your application for use with Secure Bootloader Plus

a. Copy the folder “SBLp” from the example application provided with the bootloader
into your application’s project folder

b. Include the .c and .s files found in SBLp into your project build
c. Add the folder SBLp to your project’s include paths
d. Use the supplied linker script file (.ld) supplied in SBLp or edit your existing .ld file

using the device specific instructions
e. Use your tool’s project settings to output a binary file. The elf file will still get

created
f. If and ONLY if you are using a Cortex M0 device. Copy the code found in file “M0

Code.txt” and paste it into your project’s main function inside the first USER CODE
section under the function main’s opening curly brace. This code is also found in
main.c of the supplied example application for all Cortex M0 devices.

3. Build your application.
a. Your application may now be loaded to your board and debugged with your

debugging tools or you may use FLASH File Guardian to secure your app then use
MCU Flasher to upload the resulting .ffg file to your board

3 © Driven 2 Design, LLC
 Secure Bootloader Plus & Flash File Guardian User’s Manual Rev 2, 2020.11.02
 www.drvn2dsn.com

3.0 Building an application for use in a system with Secure Bootloader Plus
Normally a Cortex M application is linked with its vector table starting at the default vector table
location for the intended micro and the .text code section following very close behind. Secure
Bootloader Plus now occupies this position so that the bootloader always first gains control of the
processor coming out of reset. Because the bootloader is never erased or re-FLASHed the board is
assured to always boot with known good code (Secure Bootloader Plus) preventing your system
from being “bricked” in the field. Even if the new application crashes the board may be reset to
bring up Secure Bootloader Plus! Your application needs to be located in FLASH memory above the
bootloader and the linker script is where we make that happen.

3.1 The linker script and ID Data Block in your application
Driven 2 Design supplies an example application for use with the Secure Bootloader product. In the
project folder for this example application (SBLptests) is a folder named “SBLp”. This folder must be
included in the build of your application for use with Secure Bootloader and contains the following,
A linker script file, a .s file that creates the ID Data Block, and a SblUtility.c/.h file pair that provides
functions to your application code for reading the data items from the ID Data Block if required.

1. Add the .s and .c files from folder “SBLp” to your application build from inside your firmware
tools and include Sblutility.h in your c files where you wish to use the SblUtility.c functions.
The .s file creates the ID Data Block that will reside in your application and edits to your
linker script will cause the ID Data Block to be created and linked in.

2. Edit the linker script file (.ld file) for your project reassigning the addresses for the memory
regions. Use the Driven 2 Design supplied device specific linker script instructions provided
for your specific device and tool set. Below are examples of linker scripts taken from a
typical project (figure 1) and a project being built for use with Secure Bootloader Plus (figure
2). For this example both projects target the STM32L496xx using ST Micro’s CubeIDE
development tools.

4 © Driven 2 Design, LLC
 Secure Bootloader Plus & Flash File Guardian User’s Manual Rev 2, 2020.11.02
 www.drvn2dsn.com

Figure 1 - Memory region definitions and section assignments for a typical application build

5 © Driven 2 Design, LLC
 Secure Bootloader Plus & Flash File Guardian User’s Manual Rev 2, 2020.11.02
 www.drvn2dsn.com

Figure 2 - Memory region definitions and section assignments for an application build intended for use with Secure Bootloader
Plus

A typical CubeIDE project (figure 1) defines just 2 memory regions, RAM and FLASH. In these
examples the FLASH region is the one we are concerned with. In the typical example just below the
region definitions come the section assignments. The section assignments tell the linker where to
put each build section and in the typical example there are several such sections that are placed in
FLASH. The 2 we care about are the .isr_vector and the .text sections. These sections are placed into
FLASH memory in the order they appear in the linker file.

6 © Driven 2 Design, LLC
 Secure Bootloader Plus & Flash File Guardian User’s Manual Rev 2, 2020.11.02
 www.drvn2dsn.com

The first section to be placed is the interrupt vector table (.isr_vector). This section is defined and
coded in the startup.s file for the project. In this example’s case the file is startup_stm32l496xx.s
created by the tools. The next section to be placed is the .text section. The .text section is the
entirety of your application code and also includes what is called “startup” code that is defined in
the startup.s file.

In the second example (figure 2) are the region definitions and section assignments for an
application build intended for use with Secure Bootloader Plus (SBLp). Note that there are 2
additional regions defined and also 2 additional section assignments that both belong in FLASH
memory. Also notice that the ORIGIN value for the first FLASH section (VECTAB) is not 0x08000000.
This is because the Bootloader occupies that space so your application must be located higher. The
L496’s FLASH memory is erasable in 2 KB pages so your application is located on the first 2 KB
boundary past the end of the bootloader code. This allows for erasing the application while leaving
the bootloader intact. These additions allow for correctly locating your app and provide for the
inclusion of the 96 (0x60) byte ID Data Block that must be included in your application build.

The memory region VECTAB was added to separate the startup code from the vector table. In a
typical build this is not necessary because the startup code is added ontop of the vector table but in
a build for SBLp it becomes necessary. The region ID_DATA was added to provide a region in FLASH
memory for the ID Data Block. The ID data Block section of the example given is defined in the file
ID_DataBlock_L496x.s and the definition does an initial fill of this section with the value 0xff for all
bytes in the section. This is the default blank state of FLASH memory. The GUI used to secure your
application binary, Flash File Guardian, checks for this section. If it is not there your file will be
rejected and not used.

As in the typical example the first section to be placed into FLASH is the .isr_vector section. This is
the application’s location of the interrupt vector table. The next section to be placed is the .iddata
section that is defined in the included .s file “/SBLp/ ID_DataBlock_L496x.s”. After this placement
follows the .text section and all others. From this you can see that the ID Data Block is placed just
above the interrupt vector table and after it the application code section.

3.2 A look at the binary output
On the next page is an example (figure 3) of an application binary that was built per the typical case
to occupy memory starting at the default location of 0x08000000. Note here that the addresses
shown in the hex editor are absolute file offsets so the first address is shown as zero. When burned
into FLASH memory zero becomes 0x08000000, the FLASH region address. This is also true of Figure
4 except the ORIGIN value becomes 0x08006800 not 0x08000000. This is because the bootloader
occupies the space of 0x08000000 to 0x080067FF.

As can be seen, the area from 0x00000000 through 0x000001CF are filled with ISR vectors and
beginning at 0x000001B0 is the .text section (application code). This is not the picture you want in a
binary intended for use with Secure Bootloader Plus.

Have a look at Figure 4 on the page after. This is how your binary should appear in the hex editor
when properly built for use with SBLp. The vector table ends at 0x000001CF and the area from
0x000001B0 to 0x0000020F is filled with 0xFF. This section filled with 0xFF is the section .iddata
(region ID_DATA) that is added to the linker script file. This section is defined in the file

7 © Driven 2 Design, LLC
 Secure Bootloader Plus & Flash File Guardian User’s Manual Rev 2, 2020.11.02
 www.drvn2dsn.com

“ID_DataBlock_L496x.s” supplied by Driven 2 Design and is placed in the binary output by the
instructions added to the linker script file in the example (figure 2) above. The memory following
and beginning at 0x00000210 is the .text section.

Figure 3 - Binary output of a typical build

8 © Driven 2 Design, LLC
 Secure Bootloader Plus & Flash File Guardian User’s Manual Rev 2, 2020.11.02
 www.drvn2dsn.com

Figure 4 - Binary output of an application build intended for use with Secure Bootloader Plus

Too summarize:

1. Copy the folder “SBLp” into your project folder then add the Driven 2 Design supplied files
ID_DataBlock_xxxxx.s and SblUtility.c to your project build.

2. Configure your firmware tool to output a raw binary file as well as the standard .elf file.
3. Edit your linker script file (*.ld) to include the added Memory regions making sure that their

ORIGIN and LENGTH values are correct. See the Driven 2 Design supplied device specific
manual for these values.

4. Add the code sections to their correct memory regions in the .ld file.
5. Your build binary file should appear as Figure 4 above with the ID Data Block (.iddata

section) at the correct address for your specific device.

9 © Driven 2 Design, LLC
 Secure Bootloader Plus & Flash File Guardian User’s Manual Rev 2, 2020.11.02
 www.drvn2dsn.com

4.0 Securing your binary image for upload to your board through Secure Bootloader Plus
using FLASH File Guardian

Here is an image of the FLASH File Guardian program. It will be referred to throughout the following
text and referenced as FFG.

Figure 5 - The Flash File Guardian GUI

FLASH File Guardian will be referred to as FFG for the remainder of the manual. FFG will open only 2
types of files. A binary image prepared and built as explained above (.bin file) and a binary image
file previously secured by FFG (.ffg file). After compiling and linking your application as described in
section 2 you must now secure your binary image file using FFG. The result of FFG securing your
binary image is an .ffg file.

Open FFG and then click on the “File Open” tool button (the folder icon on the far left of the
tool strip). The File Open dialog will be displayed. Use the File Open Dialog to navigate to and
open your release binary image (.bin file). Once opened, FFG will check for the .iddata section
between the vector table and the .text (code) section. If this area is not set to 0xFF FFG will reject
and close the file. If this happens an error message will be displayed. Once you have opened a valid
binary image file FFG will fill in these 3 data items on the GUI.
1. The file’s full path and name under Opened File:
2. The size of the file under File Size:
3. The file’s status under Status:
The Status field should now read Raw Binary Image.

10 © Driven 2 Design, LLC
 Secure Bootloader Plus & Flash File Guardian User’s Manual Rev 2, 2020.11.02
 www.drvn2dsn.com

4.1 Software Part Number:
This is as the field title suggests and is provided for your company’s software part number. It may
contain most any character without restriction up to a maximum of 16 characters. Use what works
for you and your copany.

4.2 Software Version:
This field may contain most any characters without restriction up to a maximum of 16 characters. It
will be up to you the end user to select and adhere to a version numbering format that will work for
you.

4.3 Version Date:
This field is auto filled by FFG with the current system date upon opening a binary file for
encryption. If the version date is not the current date it may be edited prior to saving the .ffg file
and the format is strictly MM/DD/YYYY without exception. Therefore 2/6/2020 is illegal and should
rather be 02/06/2020

4.4 AES Key

The AES key field is a 32 character ASCII HEX representation of the 16 byte (128 bit) encryption key.
For security reasons the AES Key does not become a part of the ID Data and is not embedded in the output
file. This is the encryption key used by the encryption and decryption algorithms implemented by Flash File
Guardian and Secure Bootloader Plus and is selected by the end user, you. The key you use must also have
been built into Secure Bootloader Plus residing in your board. IMPORTANT! Safeguard your encryption keys
for the security of your IP. It is a bit cumbersome to enter these 32 characters but once a key is entered and
used for encryption you may open the log file and perform a copy and paste to enter your key for later
versions of your code. The keys you use are kept in the log file. Clicking on Open/Close Log File will open the
log file in notepad for you.

4.5 Saving The File
After entry of the AES key, The Firmware Part Number and the Firmware Version Number the file
may be saved. Clicking the save button (disk icon in the tool strip) will save the file. The Save File
Dialog will open. FFG auto fills the file name with your entered Firmware part number and
Firmware Version Number and appends “.ffg” to the end. You may accept this file name or edit it to
your own specification but .ffg must remain the final extension if it is to be used with MCU Flasher
or Secure Bootloader for USB Host and file operation.

As soon as the .ffg file is saved and closed Flash File Guardian reopens the .ffg then reads decrypts
and verifies the integrity of the file and displays the status of this check under Status: on the GUI.
This ensures the integrity of your encrypted firmware .ffg file.

These are the steps performed by FFG when the file is saved to a secure (.ffg) file.

1. The ID Data is inserted into the ID Data
a. Software Part Number
b. Software Version Number
c. Version Date
d. The file’s size (same as your raw binary output)
e. The file name that you specified

2. A proprietary 32 bit authentication code (modified CRC) is then calculated on the entire
contents of the file and is inserted into the ID Data Block.

11 © Driven 2 Design, LLC
 Secure Bootloader Plus & Flash File Guardian User’s Manual Rev 2, 2020.11.02
 www.drvn2dsn.com

3. The file is then encrypted and output to the .ffg file and closed.
4. The file is then reopened and decrypted. All data including the authentication calculation

are verified for correctness and the status of this check is displayed.

The original binary file is not altered by this process but is only read by FFG.

The resulting .ffg file may now freely be distributed for product updates without fear of theft or
reverse engineering.

